

z

ш Z

۵.

ø

ш

4

C

-

>

1

∢

z

4

HIGH PERFORMANCE CAPILLARY ELECTROPHORESIS SYSTEM

DETERMINATION OF **TRYPTOPHANE** IN FODDERS AND RAW MATERIALS BY CAPILLARY ELECTROPHORESIS

GOST R 52347-2005

INTRODUCTION

The method enables fast quantitative determination of amino acid tryptophane in feeds, mixed fodders, and raw materials.

MEASUREMENT METHOD

Capillary electrophoresis for the determination of tryptophane is based on differential migration of its ionic form in a quartz capillary under the influence of the applied electric field. Identification of tryptophane is made by measuring its own absorbance at 219 nm wavelength in a borate buffer at 40 °C.

Basic hydrolysis of fodder sample is done according to a certified protocol in closed containers with 1.5 M barium hydroxide for 16 hours at 110 °C. After removal of the excess of the base the treated solution is analyzed by capillary electrophoresis.

RANGES OF PERCENTAGE OF TRYPTOPHANE

Measuring range in percentage for tryptophane is **0.1–2.0** %(w/w) of the analyzed fodder. The presence of other amino acids does not influence its determination.

EQUIPMENT AND REAGENTS

The "CAPEL®-105/105M" capillary electrophoresis system with a special capillary cassette for the amino acid analysis is used in measurements.

All reagents must be of analytical grade or higher.

Data acquisition, collection, processing and output are performed using a personal computer running under "WINDOWS[®] 2000/XP" operating system with installed dedicated software package for acquisition and processing of chromatography data.

EXAMPLES OF REAL ANALYSES

Buffer : borate (pH 9.18) L_{eff}/L_{tot} 65/75 cm; Capillary: 3 mAU ID 50 µm Injection: 150 mbar x sec Voltage: + 20 kV Temperature: + 40 °C Detection: 219 nm Sample: fish flour (100 mg) Measurement results: 1 - tryptophane (0.78%)min 2 3 4 5 6 1.74 mAU Sample: meat-bone flour (100 mg) **Measurement results:** 1 - tryptophane (0.52%) min ż 2 3 Δ 5 6

The contents on this paper are subject to change without notice.

